Generating Complex Connectivity Structures for Large-Scale Neural Models

نویسنده

  • Martin Hülse
چکیده

Biological neural systems and the majority of other realworld networks have topologies significant different from fully or randomly connected structures, which are frequently applied for the definition of artificial neural networks (ANN). In this work we introduce a deterministic process generating strongly connected directed graphs of fractal dimension having connectivity structures very distinct compared with random or fully connected graphs. A sufficient criterion for the generation of strongly connected directed graphs is given and we indicate how the degree-distribution is determined. This allows a targeted generation of strongly connected directed graphs. Two methods for transforming directed graphs into ANN are introduced. A discussion on the importance of strongly connected digraphs and their fractal dimension in the context of artificial adaptive neural systems concludes this work.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ESTIMATING THE VULNERABILITY OF THE CONCRETE MOMENT RESISTING FRAME STRUCTURES USING ARTIFICIAL NEURAL NETWORKS

Heavy economic losses and human casualties caused by destructive earthquakes around the world clearly show the need for a systematic approach for large scale damage detection of various types of existing structures. That could provide the proper means for the decision makers for any rehabilitation plans. The aim of this study is to present an innovative method for investigating the seismic vuln...

متن کامل

Overlap and Differences in Brain Networks Underlying the Processing of Complex Sentence Structures in Second Language Users Compared with Native Speakers

When we learn a second language later in life, do we integrate it with the established neural networks in place for the first language or is at least a partially new network recruited? While there is evidence that simple grammatical structures in a second language share a system with the native language, the story becomes more multifaceted for complex sentence structures. In this study, we inve...

متن کامل

A TWO-STAGE DAMAGE DETECTION METHOD FOR LARGE-SCALE STRUCTURES BY KINETIC AND MODAL STRAIN ENERGIES USING HEURISTIC PARTICLE SWARM OPTIMIZATION

In this study, an approach for damage detection of large-scale structures is developed by employing kinetic and modal strain energies and also Heuristic Particle Swarm Optimization (HPSO) algorithm. Kinetic strain energy is employed to determine the location of structural damages. After determining the suspected damage locations, the severity of damages is obtained based on variations of modal ...

متن کامل

Automatic Generation of Connectivity for Large-Scale Neuronal Network Models through Structural Plasticity

With the emergence of new high performance computation technology in the last decade, the simulation of large scale neural networks which are able to reproduce the behavior and structure of the brain has finally become an achievable target of neuroscience. Due to the number of synaptic connections between neurons and the complexity of biological networks, most contemporary models have manually ...

متن کامل

NUMERICAL AND EXPERIMENTAL INVESTIGATION OF WIND PRESSURE COEFFICIENTS ON SCALLOP DOME

The wind loads considerably influence lightweight spatial structures. An example of spatial structures is scallop domes that contain various configurations and forms and the wind impact on a scallop dome is more complex due to its additional curvature. In our work, the wind pressure coefficient (Cp ) on the scallop dome surface is studied numerically and experimentally. Firstly, the programming...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008